Hyperspectral Image Classification for Mineralogical Identification

نویسنده

  • William A. Peppin
چکیده

Classification is broadly used in a range of exploration technologies. This paper will summarize standard classification methods and provide a new hybrid method for classifying spectra used in mapping mineralogy with hyperspectral remote sensing data. Classification methods commonly employed do not allow the user specifically to identify key features that give confidence as to the quality of the classification. Methods that do allow feature selection typically use the position of specific absorption features only. Sometimes these positions are not in themselves diagnostic and other broad feature shapes are often useful in expert interpretation. A new hybrid method is presented in this paper that uses both the position and character of the absorption feature and longer wavelength characteristics such as broad feature shape and asymmetry. Further, this method develops the concept of a “verification image” which, when used with the classification, can give confidence that those image pixels identified contain specific feature characteristics, apart from the classification itself, that gives further support for the classification result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra

Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

The Benefits of Terrestrial Laser Scanning and Hyperspectral Data Fusion Products

Close range hyperspectral imaging is a developing method for the analysis and identification of material composition in many applications, such as in within the earth sciences. Using compact imaging devices in the field allows near-vertical topography to be imaged, thus bypassing the key limitations of viewing angle and resolution that preclude the use of airborne and spaceborne platforms. Terr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009